Advertisement
No access
Research Article
AUTOIMMUNITY

Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models

Science Translational Medicine
5 Oct 2022
Vol 14, Issue 665

Engineering immunosuppression

Antigen-specific regulatory T cell (Treg) therapy has been proposed as a treatment strategy for autoimmune diseases such as type 1 diabetes (T1D). However, isolating, expanding, and reinfusing antigen-specific Tregs from individuals with T1D has proven to be a challenge. Here, Yang et al. bypassed this requirement by generating engineered, antigen-specific human Tregs (EngTregs) by simultaneously introducing a T1D-associated T cell receptor and stably expressing FOXP3 in the cells. EngTregs, which suppressed both antigen-specific and bystander immune responses, were able to block diabetes onset in mice, suggesting that EngTregs may be an effective strategy to prevent diabetes in humans.

Abstract

Adoptive transfer of regulatory T cells (Tregs) is therapeutic in type 1 diabetes (T1D) mouse models. Tregs that are specific for pancreatic islets are more potent than polyclonal Tregs in preventing disease. However, the frequency of antigen-specific natural Tregs is extremely low, and ex vivo expansion may destabilize Tregs, leading to an effector phenotype. Here, we generated durable, antigen-specific engineered Tregs (EngTregs) from primary human CD4+ T cells by combining FOXP3 homology-directed repair editing and lentiviral T cell receptor (TCR) delivery. Using TCRs derived from clonally expanded CD4+ T cells isolated from patients with T1D, we generated islet-specific EngTregs that suppressed effector T cell (Teff) proliferation and cytokine production. EngTregs suppressed Teffs recognizing the same islet antigen in addition to bystander Teffs recognizing other islet antigens through production of soluble mediators and both direct and indirect mechanisms. Adoptively transferred murine islet-specific EngTregs homed to the pancreas and blocked diabetes triggered by islet-specific Teffs or diabetogenic polyclonal Teffs in recipient mice. These data demonstrate the potential of antigen-specific EngTregs as a targeted therapy for preventing T1D.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Figs. S1 to S12
Tables S1 to S4

Other Supplementary Material for this manuscript includes the following:

Data file S1
MDAR Reproducibility Checklist

REFERENCES AND NOTES

1
M. Wållberg, A. Cooke, Immune mechanisms in type 1 diabetes. Trends Immunol. 34, 583–591 (2013).
2
A. Pugliese, Autoreactive T cells in type 1 diabetes. J. Clin. Invest. 127, 2881–2891 (2017).
3
C. M. Hull, M. Peakman, T. I. M. Tree, Regulatory T cell dysfunction in type 1 diabetes: What’s broken and how can we fix it? Diabetologia 60, 1839–1850 (2017).
4
A. Ferraro, C. Socci, A. Stabilini, A. Valle, P. Monti, L. Piemonti, R. Nano, S. Olek, P. Maffi, M. Scavini, A. Secchi, C. Staudacher, E. Bonifacio, M. Battaglia, Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 60, 2903–2913 (2011).
5
S. Lindley, C. M. Dayan, A. Bishop, B. O. Roep, M. Peakman, T. I. Tree, Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).
6
J. A. Bluestone, J. H. Buckner, M. Fitch, S. E. Gitelman, S. Gupta, M. K. Hellerstein, K. C. Herold, A. Lares, M. R. Lee, K. Li, W. Liu, S. A. Long, L. M. Masiello, V. Nguyen, A. L. Putnam, M. Rieck, P. H. Sayre, Q. Tang, Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015).
7
J. H. Esensten, Y. D. Muller, J. A. Bluestone, Q. Tang, Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J. Allergy Clin. Immunol. 142, 1710–1718 (2018).
8
C. Raffin, L. T. Vo, J. A. Bluestone, Treg cell-based therapies: Challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).
9
Q. Tang, K. J. Henriksen, M. Bi, E. B. Finger, G. Szot, J. Ye, E. L. Masteller, H. McDevitt, M. Bonyhadi, J. A. Bluestone, In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).
10
K. V. Tarbell, S. Yamazaki, K. Olson, P. Toy, R. M. Steinman, CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004).
11
L. A. Stephens, K. H. Malpass, S. M. Anderton, Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur. J. Immunol. 39, 1108–1117 (2009).
12
P. Zhou, R. Borojevic, C. Streutker, D. Snider, H. Liang, K. Croitoru, Expression of dual TCR on DO11.10 T cells allows for ovalbumin-induced oral tolerance to prevent T cell-mediated colitis directed against unrelated enteric bacterial antigens. J. Immunol. 172, 1515–1523 (2004).
13
K. Fujio, A. Okamoto, Y. Araki, H. Shoda, H. Tahara, N. H. Tsuno, K. Takahashi, T. Kitamura, K. Yamamoto, Gene therapy of arthritis with TCR isolated from the inflamed paw. J. Immunol. 177, 8140–8147 (2006).
14
G. P. Wright, C. A. Notley, S. A. Xue, G. M. Bendle, A. Holler, T. N. Schumacher, M. R. Ehrenstein, H. J. Stauss, Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc. Natl. Acad. Sci. U.S.A. 106, 19078–19083 (2009).
15
J. Y. Tsang, Y. Tanriver, S. Jiang, S. A. Xue, K. Ratnasothy, D. Chen, H. J. Stauss, R. P. Bucy, G. Lombardi, R. Lechler, Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. J. Clin. Invest. 118, 3619–3628 (2008).
16
E. L. Masteller, M. R. Warner, Q. Tang, K. V. Tarbell, H. McDevitt, J. A. Bluestone, Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J. Immunol. 175, 3053–3059 (2005).
17
K. V. Tarbell, L. Petit, X. Zuo, P. Toy, X. Luo, A. Mqadmi, H. Yang, M. Suthanthiran, S. Mojsov, R. M. Steinman, Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med. 204, 191–201 (2007).
18
C. G. Brunstein, J. S. Miller, Q. Cao, D. H. McKenna, K. L. Hippen, J. Curtsinger, T. Defor, B. L. Levine, C. H. June, P. Rubinstein, P. B. McGlave, B. R. Blazar, J. E. Wagner, Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood 117, 1061–1070 (2011).
19
S. Sakaguchi, T. Yamaguchi, T. Nomura, M. Ono, Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).
20
K. L. Hippen, S. C. Merkel, D. K. Schirm, C. M. Sieben, D. Sumstad, D. M. Kadidlo, D. H. McKenna, J. S. Bromberg, B. L. Levine, J. L. Riley, C. H. June, P. Scheinberg, D. C. Douek, J. S. Miller, J. E. Wagner, B. R. Blazar, Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Sci. Transl. Med. 3, 83ra41 (2011).
21
C. Baecher-Allan, J. A. Brown, G. J. Freeman, D. A. Hafler, CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).
22
J. A. Bluestone, Q. Tang, Treg cells—The next frontier of cell therapy. Science 362, 154–155 (2018).
23
Y. C. Kim, A. H. Zhang, J. Yoon, W. E. Culp, J. R. Lees, K. W. Wucherpfennig, D. W. Scott, Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 92, 77–86 (2018).
24
Z. Zhang, W. Zhang, J. Guo, Q. Gu, X. Zhu, X. Zhou, Activation and functional specialization of regulatory T cells lead to the generation of Foxp3 instability. J. Immunol. 198, 2612–2625 (2017).
25
D. V. Sawant, D. A. Vignali, Once a Treg, always a Treg? Immunol. Rev. 259, 173–191 (2014).
26
N. Komatsu, M. E. Mariotti-Ferrandiz, Y. Wang, B. Malissen, H. Waldmann, S. Hori, Heterogeneity of natural Foxp3+ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. U.S.A. 106, 1903–1908 (2009).
27
X. Zhou, S. L. Bailey-Bucktrout, L. T. Jeker, C. Penaranda, M. Martinez-Llordella, M. Ashby, M. Nakayama, W. Rosenthal, J. A. Bluestone, Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).
28
S. L. Bailey-Bucktrout, M. Martinez-Llordella, X. Zhou, B. Anthony, W. Rosenthal, H. Luche, H. J. Fehling, J. A. Bluestone, Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).
29
N. Komatsu, K. Okamoto, S. Sawa, T. Nakashima, M. Oh-Hora, T. Kodama, S. Tanaka, J. A. Bluestone, H. Takayanagi, Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).
30
Y. Honaker, N. Hubbard, Y. Xiang, L. Fisher, D. Hagin, K. Sommer, Y. Song, S. J. Yang, C. Lopez, T. Tappen, E. M. Dam, I. Khan, M. Hale, J. H. Buckner, A. M. Scharenberg, T. R. Torgerson, D. J. Rawlings, Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci. Transl. Med. 12, eaay6422 (2020).
31
K. Cerosaletti, F. Barahmand-Pour-Whitman, J. Yang, H. A. DeBerg, M. J. Dufort, S. A. Murray, E. Israelsson, C. Speake, V. H. Gersuk, J. A. Eddy, H. Reijonen, C. J. Greenbaum, W. W. Kwok, E. Wambre, M. Prlic, R. Gottardo, G. T. Nepom, P. S. Linsley, Single-cell RNA sequencing reveals expanded clones of islet antigen-reactive CD4+ T cells in peripheral blood of subjects with type 1 diabetes. J. Immunol. 199, 323–335 (2017).
32
J. A. Gebe, B. B. Yue, K. A. Unrath, B. A. Falk, G. T. Nepom, Restricted autoantigen recognition associated with deletional and adaptive regulatory mechanisms. J. Immunol. 183, 59–65 (2009).
33
B. Fehse, A. Uhde, N. Fehse, H. G. Eckert, J. Clausen, R. Ruger, S. Koch, W. Ostertag, A. R. Zander, M. Stockschlader, Selective immunoaffinity-based enrichment of CD34+ cells transduced with retroviral vectors containing an intracytoplasmatically truncated version of the human low-affinity nerve growth factor receptor (deltaLNGFR) gene. Hum. Gene Ther. 8, 1815–1824 (1997).
34
B. D. Singer, L. S. King, F. R. D’Alessio, Regulatory T cells as immunotherapy. Front. Immunol. 5, 46 (2014).
35
A. E. Herman, G. J. Freeman, D. Mathis, C. Benoist, CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. 199, 1479–1489 (2004).
36
K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari, T. Nomura, S. Sakaguchi, CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).
37
D. K. Sojka, A. Hughson, T. L. Sukiennicki, D. J. Fowell, Early kinetic window of target T cell susceptibility to CD25+ regulatory T cell activity. J. Immunol. 175, 7274–7280 (2005).
38
N. Oberle, N. Eberhardt, C. S. Falk, P. H. Krammer, E. Suri-Payer, Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+Foxp3+ regulatory T cells: Independence of IL-2 consumption, TGF-beta, and various inhibitors of TCR signaling. J. Immunol. 179, 3578–3587 (2007).
39
A. Schmidt, N. Oberle, E. M. Weiss, D. Vobis, S. Frischbutter, R. Baumgrass, C. S. Falk, M. Haag, B. Brügger, H. Lin, G. W. Mayr, P. Reichardt, M. Gunzer, E. Suri-Payer, P. H. Krammer, Human regulatory T cells rapidly suppress T cell receptor-induced Ca2+, NF-κB, and NFAT signaling in conventional T cells. Sci. Signal. 4, ra90 (2011).
40
A. Schmidt, N. Oberle, P. H. Krammer, Molecular mechanisms of treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).
41
E. M. Shevach, Foxp3+ T regulatory cells: Still many unanswered questions—A perspective after 20 years of study. Front. Immunol. 9, 1048 (2018).
42
N. A. Danke, J. Yang, C. Greenbaum, W. W. Kwok, Comparative study of GAD65-specific CD4+ T cells in healthy and type 1 diabetic subjects. J. Autoimmun. 25, 303–311 (2005).
43
J. Yang, N. A. Danke, D. Berger, S. Reichstetter, H. Reijonen, C. Greenbaum, C. Pihoker, E. A. James, W. W. Kwok, Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J. Immunol. 176, 2781–2789 (2006).
44
J. Yang, N. Danke, M. Roti, L. Huston, C. Greenbaum, C. Pihoker, E. James, W. W. Kwok, CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J. Autoimmun. 31, 30–41 (2008).
45
S. A. Long, M. R. Walker, M. Rieck, E. James, W. W. Kwok, S. Sanda, C. Pihoker, C. Greenbaum, G. T. Nepom, J. H. Buckner, Functional islet-specific Treg can be generated from CD4+CD25- T cells of healthy and type 1 diabetic subjects. Eur. J. Immunol. 39, 612–620 (2009).
46
J. Yang, E. A. James, S. Sanda, C. Greenbaum, W. W. Kwok, CD4+ T cells recognize diverse epitopes within GAD65: Implications for repertoire development and diabetes monitoring. Immunology 138, 269–279 (2013).
47
D. A. Vignali, L. W. Collison, C. J. Workman, How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).
48
A. M. Thornton, E. M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).
49
L. W. Collison, M. R. Pillai, V. Chaturvedi, D. A. Vignali, Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J. Immunol. 182, 6121–6128 (2009).
50
Y. Onishi, Z. Fehervari, T. Yamaguchi, S. Sakaguchi, Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl. Acad. Sci. U.S.A. 105, 10113–10118 (2008).
51
N. A. J. Dawson, I. Rosado-Sánchez, G. E. Novakovsky, V. C. W. Fung, Q. Huang, E. McIver, G. Sun, J. Gillies, M. Speck, P. C. Orban, M. Mojibian, M. K. Levings, Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci. Transl. Med. 12, eaaz3866 (2020).
52
P. Pandiyan, L. Zheng, S. Ishihara, J. Reed, M. J. Lenardo, CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).
53
D. Q. Tran, D. D. Glass, G. Uzel, D. A. Darnell, C. Spalding, S. M. Holland, E. M. Shevach, Analysis of adhesion molecules, target cells, and role of IL-2 in human FOXP3+ regulatory T cell suppressor function. J. Immunol. 182, 2929–2938 (2009).
54
J. D. Katz, B. Wang, K. Haskins, C. Benoist, D. Mathis, Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).
55
M. S. Anderson, J. A. Bluestone, The NOD mouse: A model of immune dysregulation. Annu. Rev. Immunol. 23, 447–485 (2005).
56
K. Haskins, D. Wegmann, Diabetogenic T-cell clones. Diabetes 45, 1299–1305 (1996).
57
K. Haskins, M. McDuffie, Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249, 1433–1436 (1990).
58
M. Presa, Y. G. Chen, A. E. Grier, E. H. Leiter, M. A. Brehm, D. L. Greiner, L. D. Shultz, D. V. Serreze, The presence and preferential activation of regulatory T cells diminish adoptive transfer of autoimmune diabetes by polyclonal nonobese diabetic (NOD) T cell effectors into NSG versus NOD-scid mice. J. Immunol. 195, 3011–3019 (2015).
59
Q. Tang, J. A. Bluestone, The Foxp3+ regulatory T cell: A jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008).
60
J. L. McGovern, G. P. Wright, H. J. Stauss, Engineering specificity and function of therapeutic regulatory T Cells. Front. Immunol. 8, 1517 (2017).
61
T. Maj, W. Wang, J. Crespo, H. Zhang, W. Wang, S. Wei, L. Zhao, L. Vatan, I. Shao, W. Szeliga, C. Lyssiotis, J. R. Liu, I. Kryczek, W. Zou, Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).
62
L. Schmidleithner, Y. Thabet, E. Schönfeld, M. Köhne, D. Sommer, Z. Abdullah, T. Sadlon, C. Osei-Sarpong, K. Subbaramaiah, F. Copperi, K. Haendler, T. Varga, O. Schanz, S. Bourry, K. Bassler, W. Krebs, A. E. Peters, A. K. Baumgart, M. Schneeweiss, K. Klee, S. V. Schmidt, S. Nüssing, J. Sander, N. Ohkura, A. Waha, T. Sparwasser, F. T. Wunderlich, I. Förster, T. Ulas, H. Weighardt, S. Sakaguchi, A. Pfeifer, M. Blüher, A. J. Dannenberg, N. Ferreirós, L. J. Muglia, C. Wickenhauser, S. C. Barry, J. L. Schultze, M. Beyer, Enzymatic activity of HPGD in Treg cells suppresses Tconv cells to maintain adipose tissue homeostasis and prevent metabolic dysfunction. Immunity 50, 1232–1248.e14 (2019).
63
J. Rana, D. J. Perry, S. R. P. Kumar, M. Muñoz-Melero, R. Saboungi, T. M. Brusko, M. Biswas, CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol. Ther. 29, 2660–2676 (2021).
64
J. Y. Tsang, K. Ratnasothy, D. Li, Y. Chen, R. P. Bucy, K. F. Lau, L. Smyth, G. Lombardi, R. Lechler, P. K. Tam, The potency of allospecific Tregs cells appears to correlate with T cell receptor functional avidity. Am. J. Transplant. 11, 1610–1620 (2011).
65
M. Bettini, L. Blanchfield, A. Castellaw, Q. Zhang, M. Nakayama, M. P. Smeltzer, H. Zhang, K. A. Hogquist, B. D. Evavold, D. A. Vignali, TCR affinity and tolerance mechanisms converge to shape T cell diabetogenic potential. J. Immunol. 193, 571–579 (2014).
66
M. L. Sprouse, I. Shevchenko, M. A. Scavuzzo, F. Joseph, T. Lee, S. Blum, M. Borowiak, M. L. Bettini, M. Bettini, Cutting edge: Low-affinity TCRs support regulatory T cell function in autoimmunity. J. Immunol. 200, 909–914 (2018).
67
M. S. Turner, L. P. Kane, P. A. Morel, Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).
68
M. S. Turner, K. Isse, D. K. Fischer, H. R. Turnquist, P. A. Morel, Low TCR signal strength induces combined expansion of Th2 and regulatory T cell populations that protect mice from the development of type 1 diabetes. Diabetologia 57, 1428–1436 (2014).
69
G. Plesa, L. Zheng, A. Medvec, C. B. Wilson, C. Robles-Oteiza, N. Liddy, A. D. Bennett, J. Gavarret, A. Vuidepot, Y. Zhao, B. R. Blazar, B. K. Jakobsen, J. L. Riley, TCR affinity and specificity requirements for human regulatory T-cell function. Blood 119, 3420–3430 (2012).
70
W. I. Yeh, H. R. Seay, B. Newby, A. L. Posgai, F. B. Moniz, A. Michels, C. E. Mathews, J. A. Bluestone, T. M. Brusko, Avidity and bystander suppressive capacity of human regulatory T cells expressing de novo autoreactive T-cell receptors in type 1 diabetes. Front. Immunol. 8, 1313 (2017).
71
S. Nair, G. E. Archer, T. F. Tedder, Isolation and generation of human dendritic cells. Curr. Protoc. Immunol. Chapter 7, Unit7.32 (2012).
72
R. Gastpar, C. Gross, L. Rossbacher, J. Ellwart, J. Riegger, G. Multhoff, The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J. Immunol. 172, 972–980 (2004).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Translational Medicine
Volume 14 | Issue 665
October 2022

Submission history

Received: 8 November 2021
Accepted: 25 August 2022

Permissions

Request permissions for this article.

Acknowledgments

We thank A. Hocking for assistance with writing and editing the manuscript and L. Smith for effective coordination of these collaborative studies. We also thank the investigators and staff of the BRI Translational Research Core and BRI Diabetes Research Program for recruitment of healthy controls and individuals with T1D, respectively.
Funding: This work was supported by a grant from the Leona M. and Harry B. Helmsley Charitable Trust (to D.J.R. and J.H.B.), GentiBio Inc. (to D.J.R.), the Seattle Children’s Research Institute (SCRI) Program for Cell and Gene Therapy (PCGT), the Children’s Guild Association Endowed Chair in Pediatric Immunology (to D.J.R.), and the Hansen Investigator in Pediatric Innovation Endowment (to D.J.R.).
Author contributions: S.J.Y., A.K.S., D.J.R., and J.H.B. conceptualized and designed the study. S.J.Y., T.T., K.M., and E.M. performed the editing of human CD4+ T cells and the in vitro suppression assays using the human EngTregs. F.B.-p.-W. generated the lentiviral constructs for the human EngTregs. A.K.S., T.D., Y.H., Y.X., J.S., P.J.C., and K.S. performed the mouse studies. Y.H. designed and I.K. generated the AAV donor constructs for HDR editing of human and mouse EngTregs. K.C. and P.S.L. identified the human islet-specific TCRs. D.L. interpreted immunohistochemistry studies of mouse pancreata. S.J.Y., A.K.S., K.S., D.J.R., and J.H.B. wrote the manuscript with assistance from all co-authors.
Competing interests: J.H.B. is a Scientific Co-Founder and Scientific Advisory Board member of GentiBio, a consultant for Bristol-Myers Squibb and Hotspot Therapeutics, and has past and current research projects sponsored by Amgen, Bristol-Myers Squib, Janssen, Novo Nordisk, and Pfizer. She is a member of the Type 1 Diabetes Trialnet Study Group, a partner of the Allen Institute for Immunology, and a member of the Scientific Advisory Boards for the La Jolla Institute for Allergy and Immunology and BMS Immunology. D.J.R. is Scientific Co-Founder, Scientific Advisor and Scientific Advisory Board member of GentiBio, and Scientific Co-Founder and Scientific Advisory Board member of BeBiopharma Inc. He has past and current funding from GentiBio for related work and from CSL-Behring, BeBiopharma Inc., and Emendo Bio for unrelated studies. J.H.B., D.J.R., S.J.Y., A.K.S., P.J.C., Y.H., and K.S. are inventors on a patent describing methods for generating antigen-specific engineered regulatory T cells [artificial antigen-specific immunoregulatory T (aIRT) cells application no. PCT/US2020/039445 filed 24 June 2020 and PCT/US2021/064561 filed 21 December 2021]. All other authors declare that they have no competing interests.
Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. The corresponding authors and associated institutions will coordinate transfer of requested materials. There are confidential sponsored research agreements that may govern some of the materials described in the manuscript. In addition, some of the materials and methods are also covered by patent rights.

Authors

Affiliations

Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Resources, and Validation.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Investigation, Methodology, Validation, and Visualization.
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Role: Investigation.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Investigation, Methodology, Resources, Validation, and Visualization.
Fariba Barahmand-pour-Whitman https://orcid.org/0000-0002-7513-5036
Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Investigation, Methodology, and Validation.
Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Role: Resources.
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Resources, Validation, and Writing - review & editing.
Kelsey Mauk
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Role: Investigation.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Investigation, Methodology, and Validation.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Validation, and Writing - original draft.
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Formal analysis, Investigation, Methodology, Resources, and Validation.
Peter J. Cook
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Conceptualization, Methodology, Project administration, and Supervision.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Roles: Project administration, Supervision, Visualization, Writing - original draft, and Writing - review & editing.
Iram Khan
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Role: Resources.
Denny Liggitt
Department of Comparative Medicine, University of Washington, Seattle, WA 98101, USA.
Roles: Investigation and Visualization.
Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Department of Pediatrics, University of Washington, Seattle, WA 98101, USA.
Department of Immunology, University of Washington, Seattle, WA 98101, USA.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
Department of Immunology, University of Washington, Seattle, WA 98101, USA.
Department of Medicine, University of Washington, Seattle, WA 98101, USA.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.

Funding Information

The Children’s Guild Association Endowed Chair in Pediatric Immunology
GentiBio Inc
Hansen Investigator in Pediatric Innovation Endowment

Notes

*
Corresponding author. Email: [email protected] (J.H.B.); [email protected] (D.J.R.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase access to this article

Download and print this article within 24 hours for your personal scholarly, research, and educational use.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media