Advertisement

Abstract

Hydrogels have diverse chemical properties and can exhibit reversibly large mechanical deformations in response to external stimuli; these characteristics suggest that hydrogels are promising materials for soft robots. However, reported actuators based on hydrogels generally suffer from slow response speed and/or poor controllability due to intrinsic material limitations and electrode fabrication technologies. Here, we report a hydrogel actuator that operates at low voltages (<3 volts) with high performance (strain > 50%, energy density > 7 × 105 joules per cubic meter, and power density > 3 × 104 watts per cubic meter), surpassing existing hydrogel actuators and other types of electroactive soft actuators. The enhanced performance of our actuator is due to the formation of wrinkled nanomembrane electrodes that exhibit high conductivity and excellent mechanical deformation through capillary-assisted assembly of metal nanoparticles and deswelling-induced wrinkled structures. By applying an electric potential through the wrinkled nanomembrane electrodes that sandwich the hydrogel, we were able to trigger a reversible and substantial electroosmotic water flow inside a hydrogel film, which drove the controlled swelling of the hydrogel. The high energy efficiency and power density of our wrinkled nanomembrane electrode–induced actuator enabled the fabrication of an untethered insect-scale aquabot integrated with an on-board control unit demonstrating maneuverability with fast locomotion speed (1.02 body length per second), which occupies only 2% of the total mass of the robot.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Figs. S1 to S29
Tables S1 and S2
References (6983)

Other Supplementary Material for this
manuscript includes the following:

Movies S1 to S5

REFERENCES AND NOTES

1
K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood,Controlled flight of a biologically inspired, insect-scale robot. Science340,603–607 (2013).
2
Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E. F. Helbling, N. S. P. Hyun, D. R. Clarke, R. J. Wood,Controlled flight of a microrobot powered by soft artificial muscles. Nature575,324–329 (2019).
3
Y. Wu, J. K. Yim, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, X. Wang, R. S. Fearing, R. J. Full, L. Lin,Insect-scale fast moving and ultrarobust soft robot. Sci. Robot.4,eaax1594 (2019).
4
Z. Zhakypov, K. Mori, K. Hosoda, J. Paik,Designing minimal and scalable insect-inspired multi-locomotion millirobots. Nature571,381–386 (2019).
5
Y. Tang, Y. Chi, J. Sun, T.-H. Huang, O. H. Maghsoudi, A. Spence, J. Zhao, H. Su, J. Yin,Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Sci. Adv.6,eaaz6912 (2020).
6
J. Liang, Y. Wu, J. K. Yim, H. Chen, Z. Miao, H. Liu, Y. Liu, Y. Liu, D. Wang, W. Qiu, Z. Shao, M. Zhang, X. Wang, J. Zhong, L. Lin,Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot.6,eabe7906 (2021).
7
S. I. Rich, R. J. Wood, C. Majidi,Untethered soft robotics. Nat. Electron.1,102–112 (2018).
8
C. A. Aubin, S. Choudhury, R. Jerch, L. A. Archer, J. H. Pikul, R. F. Shepherd,Electrolytic vascular systems for energy-dense robots. Nature571,51–57 (2019).
9
G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, Z. Zhang, M. Zhang, B. Wu, S. Yin, Y. Xu, H. Fan, Z. Chen, W. Song, W. Yang, B. Pan, J. Hou, W. Zou, S. He, X. Yang, G. Mao, Z. Jia, H. Zhou, T. Li, S. Qu, Z. Xu, Z. Huang, Y. Luo, T. Xie, J. Gu, S. Zhu, W. Yang,Self-powered soft robot in the Mariana Trench. Nature591,66–71 (2021).
10
T. Li, G. Li, Y. Liang, T. Cheng, J. Dai, X. Yang, B. Liu, Z. Zeng, Z. Huang, Y. Luo, T. Xie, W. Yang,Fast-moving soft electronic fish. Sci. Adv.3,e1602045 (2017).
11
C. Christianson, N. N. Goldberg, D. D. Deheyn, S. Cai, M. T. Tolley,Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot.3,eaat1893 (2018).
12
Z. Chen, S. Shatara, X. Tan,Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE ASME Trans. Mechatron.15,448–459 (2010).
13
Z. Chen,A review on robotic fish enabled by ionic polymer–metal composite artificial muscles. Robotics Biomim.4,24 (2017).
14
R. Khodambashi, S. Berman, X. He, D. M. Aukes, Miniaturized untethered soft robots using hydrogel-based soft voxel actuators, in 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft) (IEEE, 2021), pp. 571–574.
15
J. Shu, D. A. Ge, E. Wang, H. Ren, T. Cole, S. Y. Tang, X. Li, X. Zhou, R. Li, H. Jin, W. Li, M. D. Dickey, S. Zhang,A liquid metal artificial muscle. Adv. Mater.33,2103062 (2021).
16
H. Zhao, Y. Huang, F. Lv, L. Liu, Q. Gu, S. Wang,Biomimetic 4D-printed breathing hydrogel actuators by nanothylakoid and thermoresponsive polymer networks. Adv. Funct. Mater. ,2105544 (2021).
17
R. Khodambashi, Y. Alsaid, R. Rico, H. Marvi, M. M. Peet, R. E. Fisher, S. Berman, X. He, D. M. Aukes,Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater.33,2005906 (2021).
18
J. Kim, A. Hanna James, M. Byun, D. Santangelo Christian, C. Hayward Ryan,Designing responsive buckled surfaces by halftone gel lithography. Science335,1201–1205 (2012).
19
Y. Zhao, C.-Y. Lo, L. Ruan, C.-H. Pi, C. Kim, Y. Alsaid, I. Frenkel, R. Rico, T.-C. Tsao, X. He,Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot.6,eabd5483 (2021).
20
G. Li, G. Fan, Z. Liu, Z. Liu, J. Jiang, Y. Zhao,Photoresponsive shape memory hydrogels for complex deformation and solvent-driven actuation. ACS Appl. Mater. Interfaces12,6407–6418 (2020).
21
X. Qian, Y. Zhao, Y. Alsaid, X. Wang, M. Hua, T. Galy, H. Gopalakrishna, Y. Yang, J. Cui, N. Liu, M. Marszewski, L. Pilon, H. Jiang, X. He,Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol.14,1048–1055 (2019).
22
L. Huang, R. Jiang, J. Wu, J. Song, H. Bai, B. Li, Q. Zhao, T. Xie,Ultrafast digital printing toward 4D shape changing materials. Adv. Mater.29,1605390 (2017).
23
Y. Ma, M. Hua, S. Wu, Y. Du, X. Pei, X. Zhu, F. Zhou, X. He,Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci. Adv.6,eabd2520 (2020).
24
C. Ma, X. le, X. Tang, J. He, P. Xiao, J. Zheng, H. Xiao, W. Lu, J. Zhang, Y. Huang, T. Chen,A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations. Adv. Funct. Mater.26,8670–8676 (2016).
25
M. Ji, N. Jiang, J. Chang, J. Sun,Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater.24,5412–5419 (2014).
26
D. Lunni, M. Cianchetti, C. Filippeschi, E. Sinibaldi, B. Mazzolai,Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces7,1901310 (2020).
27
H. Na, Y. W. Kang, C. S. Park, S. Jung, H. Y. Kim, J. Y. Sun,Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science376,301–307 (2022).
28
C. Y. Li, S. Y. Zheng, X. P. Hao, W. Hong, Q. Zheng, Z. L. Wu,Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels. Sci. Adv.8,eabm9608 (2022).
29
L. Liu, C. Wang, Z. Wu, Y. Xing,Ultralow-voltage-drivable artificial muscles based on a 3D structure MXene-PEDOT:PSS/AgNWs electrode. ACS Appl. Mater. Interfaces14,18150–18158 (2022).
30
M. Kotal, R. Tabassian, S. Roy, S. Oh, I.-K. Oh,Metal–organic framework-derived graphitic nanoribbons anchored on graphene for electroionic artificial muscles. Adv. Funct. Mater.30,1910326 (2020).
31
G. Wu, X. Wu, Y. Xu, H. Cheng, J. Meng, Q. Yu, X. Shi, K. Zhang, W. Chen, S. Chen,High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater.31,1806492 (2019).
32
C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, W. Chen,High-performance graphdiyne-based electrochemical actuators. Nat. Commun.9,752 (2018).
33
S. Umrao, R. Tabassian, J. Kim, V. H. Nguyen, Q. Zhou, S. Nam, I.-K. Oh,MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot.4,eaaw7797 (2019).
34
M. Kotal, J. Kim, R. Tabassian, S. Roy, V. H. Nguyen, N. Koratkar, I. K. Oh,Highly bendable ionic soft actuator based on nitrogen-enriched 3D hetero-nanostructure electrode. Adv. Funct. Mater.28,1802464 (2018).
35
Y. Yan, T. Santaniello, L. G. Bettini, C. Minnai, A. Bellacicca, R. Porotti, I. Denti, G. Faraone, M. Merlini, C. Lenardi, P. Milani,Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes. Adv. Mater.29,1606109 (2017).
36
H. S. Wang, J. Cho, D. S. Song, J. H. Jang, J. Y. Jho, J. H. Park,High-performance electroactive polymer actuators based on ultrathick ionic polymer–metal composites with nanodispersed metal electrodes. ACS Appl. Mater. Interfaces9,21998–22005 (2017).
37
J. Ko, D. Kim, Y. Song, S. Lee, M. Kwon, S. Han, D. Kang, Y. Kim, J. Huh, J. S. Koh, J. Cho,Electroosmosis-driven hydrogel actuators using hydrophobic/hydrophilic layer-by-layer assembly-induced crack electrodes. ACS Nano14,11906–11918 (2020).
38
Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang, B. Sun, C. Ye, M. Zhu,Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater.31,2104536 (2021).
39
C. Lim, Y. Shin, J. Jung, J. H. Kim, S. Lee, D. H. Kim,Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials7,031502 (2019).
40
B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu, J. Xu, X. Zhao,Pure PEDOT:PSS hydrogels. Nat. Commun.10,1043 (2019).
41
Y. Ohm, C. Pan, M. J. Ford, X. Huang, J. Liao, C. Majidi,An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron.4,185–192 (2021).
42
Y. Wang, S. Gong, D. Gómez, Y. Ling, L. W. Yap, G. P. Simon, W. Cheng,Unconventional janus properties of enokitake-like gold nanowire films. ACS Nano12,8717–8722 (2018).
43
S. Liu, D. S. Shah, R. Kramer-Bottiglio,Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater.20,851–858 (2021).
44
N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume, T. Someya,Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater.16,834–840 (2017).
45
D. Jung, C. Lim, H. J. Shim, Y. Kim, C. Park, J. Jung, S. I. Han, S. H. Sunwoo, K. W. Cho, G. D. Cha, D. C. Kim, J. H. Koo, J. H. Kim, T. Hyeon, D. H. Kim,Highly conductive and elastic nanomembrane for skin electronics. Science373,1022–1026 (2021).
46
D. Han, C. Farino, C. Yang, T. Scott, D. Browe, W. Choi, J. W. Freeman, H. Lee,Soft robotic manipulation and locomotion with a 3D-printed electroactive hydrogel. ACS Appl. Mater. Interfaces10,17512–17518 (2018).
47
Y. Shin, M.-Y. Choi, J. Choi, J.-H. Na, S. Y. Kim,Design of an electro-stimulated hydrogel actuator system with fast flexible folding deformation under a low electric field. ACS Appl. Mater. Interfaces13,15633–15646 (2021).
48
S. Kang, D. Nam, J. Choi, J. Ko, D. Kim, C. H. Kwon, J. Huh, J. Cho,Highly conductive paper/textile electrodes using ligand exchange reaction-induced in situ metallic fusion. ACS Appl. Mater. Interfaces11,12032–12042 (2019).
49
Y. Ko, M. Kwon, W. K. Bae, B. Lee, S. W. Lee, J. Cho,Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun.8,536 (2017).
50
J. N. Israelachvili, in Intermolecular and Surface Forces (Third Edition), J. N. Israelachvili, Ed. (Academic Press, 2011), pp. 253–289.
51
M. Matsukawa, K.-H. Wang, Y. Imura, T. Kawai,Au nanoparticle monolayer nanosheets as flexible transparent conductive electrodes. ACS Appl. Nano Mater.4,10845–10851 (2021).
52
S. Shi, T. P. Russell,Nanoparticle assembly at liquid–liquid interfaces: From the nanoscale to mesoscale. Adv. Mater.30,1800714 (2018).
53
C. Xing, S. Zhong, D. Liu, T. Zhang, A. Cao, P. Zeng, D. Men, C. Li, W. Cai, Y. Li,Hydrogel [email protected] nanoparticle arrays based on self-assembly co-assisted by electrostatic attraction and hydrogel-shrinkage for SERS detection with active gaps. Adv. Mater. Interfaces8,2101055 (2021).
54
M. U. B. Christiansen, N. Seselj, C. Engelbrekt, M. Wagner, F. N. Stappen, J. Zhang,Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications. J. Mater. Chem. A6,556–564 (2018).
55
Z. Ye, C. Li, Q. Chen, Y. Xu, S. E. J. Bell,Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: Rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. Nanoscale13,5937–5953 (2021).
56
T. Nishimura, N. Ito, K. Kinoshita, M. Matsukawa, Y. Imura, T. Kawai,Fabrication of flexible and transparent conductive nanosheets by the UV-irradiation of gold nanoparticle monolayers. Small16,1903365 (2020).
57
R. Kumar, K. Jahan, R. K. Nagarale, A. Sharma,Nongassing long-lasting electro-osmotic pump with polyaniline-wrapped aminated graphene electrodes. ACS Appl. Mater. Interfaces7,593–601 (2015).
58
Y. Zhang, M. Tian, L. Wang, H. Zhao, L. Qu,Flexible janus textile-based electroosmotic pump for large-area unidirectional positive water transport. Adv. Mater. Interfaces7,1902133 (2020).
59
S. Kusama, K. Sato, S. Yoshida, M. Nishizawa,Self-moisturizing smart contact lens employing electroosmosis. Adv. Mater. Technol.5,1900889 (2020).
60
L. Li, X. Wang, Q. Pu, S. Liu,Advancement of electroosmotic pump in microflow analysis: A review. Anal. Chim. Acta1060,1–16 (2019).
61
W. Shin, J. M. Lee, R. K. Nagarale, S. J. Shin, A. Heller,A miniature, nongassing electroosmotic pump operating at 0.5 V. J. Am. Chem. Soc.133,2374–2377 (2011).
62
S. Sreenath, R. Suman, K. V. Sayana, P. S. Nayanthara, N. G. Borle, V. Verma, R. K. Nagarale,Low-voltage nongassing electroosmotic pump and infusion device with polyoxometalate-encapsulated carbon nanotubes. Langmuir37,1563–1570 (2021).
63
X. Wang, C. Cheng, S. Wang, S. Liu,Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluidics6,145–162 (2009).
64
S. K. Vajandar, D. Xu, D. A. Markov, J. P. Wikswo, W. Hofmeister, D. Li,SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology18,275705 (2007).
65
H. Sun,COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B.102,7338–7364 (1998).
66
A. A. Samoletov, C. P. Dettmann, M. A. J. Chaplain,Thermostats for “slow” configurational modes. J. Stat. Phys.128,1321–1336 (2007).
67
M. Parrinello, A. Rahman,Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys.52,7182–7190 (1981).
68
I. Takeuchi, K. Asaka, K. Kiyohara, T. Sugino, N. Terasawa, K. Mukai, T. Fukushima, T. Aida,Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids. Electrochim. Acta54,1762–1768 (2009).
69
J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, I. W. Hunter,Artificial muscle technology: Physical principles and naval prospects. IEEE J. Ocean. Eng.29,706–728 (2004).
70
J. Kwon, S. J. Yoon, Y.-L. Park,Flat inflatable artificial muscles with large stroke and adjustable force-length relations. IEEE Trans. Robot.36,743–756 (2020).
71
X. Yang, L. Chang, N. O. Pérez-Arancibia,An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot.5,eaba0015 (2020).
72
M. Duduta, E. Hajiesmaili, H. Zhao, R. J. Wood, D. R. Clarke,Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. U.S.A.116,2476–2481 (2019).
73
S. Wang, B. Huang, D. McCoul, M. Li, L. Mu, J. Zhao,A soft breaststroke-inspired swimming robot actuated by dielectric elastomers. Smart Mater. Struct.28,045006 (2019).
74
J. Shintake, V. Cacucciolo, H. Shea, D. Floreano,Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robot.5,466–474 (2018).
75
Q. Shen, T. Wang, J. Liang, L. Wen,Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Mater. Struct.22,075035 (2013).
76
D. Bartlett Michael, N. Kazem, M. J. Powell-Palm, X. Huang, W. Sun, J. A. Malen, C. Majidi,High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. U.S.A.114,2143–2148 (2017).
77
Q. Zhao, S. Liu, J. Chen, G. He, J. Di, L. Zhao, T. Su, M. Zhang, Z. Hou,Fast-moving piezoelectric micro-robotic fish with double caudal fins. Robot. Auton. Syst.140,103733 (2021).
78
L. Wen, Z. Ren, V. di Santo, K. Hu, T. Yuan, T. Wang, G. V. Lauder,Understanding fish linear acceleration using an undulatory biorobotic model with soft fluidic elastomer actuated morphing median fins. Soft Robot.5,375–388 (2018).
79
Z. Ye, P. Hou, Z. Chen, I. Member,2D maneuverable robotic fish propelled by multiple ionic polymer–metal composite artificial fins. Int. J. Intell. Robot. Appl.1,195–208 (2017).
80
Z. Chen, T. I. Um, H. B.-Smith,Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart Nano Mater.3,296–308 (2012).
81
S.-H. Song, M. S. Kim, H. Rodrigue, J. Y. Lee, J. E. Shim, M. C. Kim, W. S. Chu, S. H. Ahn,Turtle mimetic soft robot with two swimming gaits. Bioinspir. Biomim.11,036010 (2016).
82
A. J. Clark, X. Tan, P. K. McKinley,Evolutionary multiobjective design of a flexible caudal fin for robotic fish. Bioinspir. Biomim.10,065006 (2015).
83
R. K. Katzschmann, J. DelPreto, R. MacCurdy, D. Rus,Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot.3,eaar3449 (2018).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Robotics
Volume 7 | Issue 71
October 2022

Submission history

Received: 21 February 2022
Accepted: 19 September 2022

Permissions

Request permissions for this article.

Acknowledgments

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; Ministry of Science and ICT) (NRF-2021R1A2C3004151 and NRF-2021R1C1C1011872) and the new faculty research fund of Ajou University and the Ajou University research fund.
Author contributions: J.K., J.-S.K., and J.C. conceived the idea and interpreted the results. J.K., C.K., D.K., Y.S., S.L., B.Y., S.H., D.K., J.-S.K., and J.C. designed and performed the experiments. J.H. conducted theoretical calculation and simulation. J.K., J.-S.K., and J.C. wrote and revised the manuscript. All authors discussed the results and commented on the manuscript.
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All the data necessary to evaluate the conclusions of the paper are presented in the main text and the Supplementary Materials.

Authors

Affiliations

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Roles: Conceptualization, Investigation, Methodology, Project administration, Validation, Visualization, and Writing - original draft.
Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
Roles: Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, and Writing - review & editing.
Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
Roles: Investigation and Methodology.
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Roles: Conceptualization, Investigation, Methodology, Resources, Visualization, Writing - original draft, and Writing - review & editing.
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Roles: Conceptualization, Investigation, Methodology, Resources, Visualization, and Writing - review & editing.
Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
Roles: Investigation, Methodology, Writing - original draft, and Writing - review & editing.
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
Roles: Formal analysis and Visualization.
Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
Roles: Investigation, Methodology, Validation, and Visualization.
Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
Roles: Investigation and Methodology.
Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
Roles: Conceptualization, Funding acquisition, Investigation, Methodology, Resources, Supervision, Validation, and Writing - original draft.
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Roles: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.

Funding Information

Notes

*
Corresponding author. Email: [email protected] (J.C.); [email protected] (J.-S.K.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase access to this article

Download and print this article within 24 hours for your personal scholarly, research, and educational use.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media